磁性Langmuir-Blodgett膜のX線構造解析

高村 巧,松下 賢*,下山雄平*,武笠幸一**

A Structure Analysis of Langmuir-Blodgett

Magnetic Films by X-ray Diffraction

Takumi Takamura, Ken Matsushita^{*}, Yuhei Shimoyama^{*} and Koichi Mukasa^{**}

要

旨

飽和脂肪酸重金属塩LB膜による二次元磁性体の開発を行った。その中でn-エイコサン酸(アラキジン酸)マンガン塩LB膜が有望であることを見いだし、X線回折を用いてその構造を検討した。ガラス 基板に累積させた多層膜は1~3層が基板にほぼ垂直に配列し、それ以上の厚みのある層は基板の法線 方向から約30°近く傾いた構造が判明した。多層膜の微結晶の大きさに対する乱れは小さく、法線方 向の分子配列の制御性が高いことが確認された。

キーワード : LB膜,磁性膜,X線回折,傾斜配向

1. 序 論

LB膜はLangunuir と Blodgett によって1930年 代に開発され^{1),2)},常圧常温中で構造制御の優れ た薄膜作製技術として広く知られている。近年, 分子素子等の新概念が提唱されるに至り,非常に 注目されている。その中で分子磁性素子の形成を 目指し,LB法による二次元磁性体の作製技術及び 評価技術の開発を行っている。二次元磁性の研究 としては,Pomerantzのステアリン酸マンガンの電 子常磁性共鳴法(EPR)による磁性評価とX線回折 による構造評価^{3),4)}があり,さらにその高次の相 転移現象に関連して長谷田ら⁵⁾による磁化率の測 定がある。また,Cholletの銅錯体のEPRによる二 次元磁性の報告⁶⁾もあるが,構造と物性の関連性 が明確ではない。本研究では飽和脂肪酸重金属塩 LB膜による二次元磁性体の形成を検討し,磁性膜 として有望なn-エイコサン酸(アラキジン酸)マ ンガン塩LB膜を見いだした。その物性との関連 性を明確にするため、X線回折を用いてその構造 を検討した。また、X線によるLB膜の構造解析 は、軟X線の分光素子の検討の際、脂肪酸バリウ ム、鉛、カドミウム塩において調べられており^{7)~9)}、 赤外スペクトルによるアルキル鎖の配列の報告も あり¹⁰⁾、これらとの比較も行った。

2. 実験方法

LB膜はコンピュータ制御でバリヤ移動及び基板 の上昇と下降が可能なKuhnタイプの装置を用い作 製した。膜物質は数種の直鎖脂肪酸の中からアラ キジン酸を選び、クロロホルム及びn-ヘキサンで 溶かした溶液をマイクロシリンジで展開した。重 金属は数種の金属からマンガンを選んだ。下層液

^{*} 北海道教育大学函館校物理教室

^{**} 北海道大学工学部電子工学科

は超純水に塩化マンガンを溶解した水溶液に炭酸 水素ナトリウムを加え,水面上の単分子膜がすべ てマンガン塩になるように pH = 7.00 に調整し た。LB膜作製プロセスは不純物による汚染に敏感 であり,試薬は全て特級とし,溶剤はスペクトル グレードを使用した。基板には石英ガラスを用 い,前処理としてエチルアルコールで数度超音波 洗浄したものを使用した。LB膜は低温の方が崩壊 圧が高く安定であるが,低温過ぎると膜が硬くな るため,温度は17℃ とした。累積圧力はピンホー ルのない成膜をめざし,通常より10 mN/m以上高 い40 mN/m とした。累積はこの圧力下で垂直方向 に基板を通常の速度の半分以下の 2.5 mm/min で 上下し,基板上に単分子膜を移植した。

示差熱分析 (DSC) はセイコー電子製を使用し, 標準試料はサファイヤを使用した。温度範囲は – 50~+200° で昇温速度 5°C/minで掃引した。構 造評価は JEOL製JDX-8020 X線回折装置を用いた。 Cu(K α)の管球で電圧 40 kV,電流 25 mAの条件 でモノクロメータを介して θ -2 θ 法で計測した。 比較のためバルク状のアラキジン酸マンガン塩粉 末のX線回折を行った。

3. 結 果

3.1 *π*-A 曲線

アラキジン酸マンガンの単分子膜の表面圧-面 積曲線(π-A曲線)を図1に示す。この単分子膜 は液体状態を経ずに気体膜から直接固体膜へと変 化しており,最も典型的なπ-A曲線を示す。

北海道立工業技術センター研究報告No.3(1994)

これはLB膜作製条件として清浄度が高く,不純物 の存在による中間膜を形成しないことを示す。さ らに,膜の崩壊が 60 mN/m 以上で起こっており, 膜の安定度が非常に高く,累積が容易であること がわかる。π-A 曲線において0.2 nm²/Molecule のアルキル鎖の1分子あたりの断面積で限界面積 となっており,他の直鎖脂肪酸と同様の挙動を示 す。頻用されるステアリン酸カドミウムLB膜に 比べ,アラキジン酸が同程度の崩壊圧力を有する ことから,この膜の累積は比較的容易であること が知られた。図2にアラキジン酸LB膜の累積構造 のモデルを示す。アラキジン酸はステアリン酸に 比べ炭素が2個多いことにより分子間水素結合が 増加し,結果として膜の面内方向の凝集力が高ま ることが期待される¹¹⁾。

図2.ガラス基板上のアラキジン酸マンガン塩LB膜の模式図。Mnイオン に2本のアラキジン酸が結合し、Y膜(2分子膜)を形成する。Mnイオン は極性層を形成し、磁気的に異なる2種類の相互作用をする、A)面内相 互作用、B)2分子膜間相互作用。

3.2 累積過程

累積は上昇時に親水性のガラス基板に,この単 分子膜が親水性のMnイオンを内側にして移しとら れ,下降時に疎水性のアルキル鎖から積層する。 以下同様にして,基板の上下に伴い,一層毎に逆 方向に累積されるY型のLB膜(二分子膜)を形成 する。単分子を基板上に移し取る場合,膜の累積 状態を示す指標として累積比を用いる。累積比*ρ* は,次式で定義される。 北海道立工業技術センター研究報告No.3(1994)

 $\rho = A_r / A_t$ (1) ここでA_rは累積基板上に移し取られた単分子膜 の面積減少分, A_iは累積基板の実行移動面積であ る。累積比は第1層が1.1程度で2層目以降は 0.9 ~ 0.8 程度であった。第1層は,ほぼ完全に単分 子が基板に移し取られている。しかし、2層目以降 では,膜に格子欠陥が生じたかまたは,部分的に 膜が欠落していることが確認された。その原因と して,疎水基同士の相互作用が弱いのことも考え られる。

表1.アラキジン酸およびアラキジン酸マンガン塩の示差熱 分析結果

Sample	Main transition			Pre-transition		
	Тс (°С)	ΔH (kJ/mol)	∆S (kJ/K∙moł)	Тс (°С)	∆H (kJ/mol)	∆S (kJ/K∙mol)
Mn-Arachidate	74.3	33.1	95.1	50.2	2.24	6.92
Arachidic-Acid	74.9	30.6	87.9		_	_

3.3 示差熱分析

粉末状のアラキジン酸とアラキジン酸マンガン 塩の示差熱分析を,示差走査熱量計(DSC)を用 いて行った。表1に転移温度T,転移エンタルピー ΔH . および転移エントロピー ΔS を示す。マンガ ン塩では1分子が2本のアルキル鎖を有しているた め、1本分に換算している。脂肪酸と塩の主転移は ほぼ同程度の温度T,エンタルピーΔHを有する。 また、脂質等と同様にアルキル鎖の長さが炭素数 20 個と十分長いため、エンタルピームHは大き い。DSCによるとアラキジン酸は主転移の吸熱 ピークのみが観察された。しかしアラキジン酸マ ンガン塩では、主転移以下の温度で前駆転移(Pre - Transition) の吸熱ピークが観測される。-50℃ から+200℃まで走査した結果,3相が確認された。 第一相は室温相で、アルキル鎖の運動はほとんど 抑さえられていると思われる。第二相は小さな前 駆転移を起こし、アルキル鎖の運動が開放される。 第三相は大きな主転移で通常の融点に近く, アル キル鎖は液体のようにかなり激しく運動してい る。しかし同時に、マンガンイオン間にある程度 の凝集力があることから、異方性を有した液晶に 近い状態であると思われる。粘土鉱物内のアルキ ル鎖の挙動と同様に,前駆転移ではアルキル鎖の 傾斜角が変化して層状構造の面間隔が変化するこ とが考えられる。

表2.X線回折法から算出されたアラキジン酸マンガン 塩LB膜の各累積数における面間隔、回折強度お よびアルキル鎖の傾斜角

Layer Multiplicity (Number)	Plane Distance (nm)	Diffraction Intensity (001) (× 10 ⁴)	Tilt Angle (degrees)
19	4.90	35.7	26.9
9	5.13	9.00	21.1
5	5.13	6.18	21.1
3	5.38	0.392	11.8
2	5.38	0.332	11.8
1	5.38	0.213	11.8

3.4 X線回折

二次元磁性LB膜であるアラキジン酸マンガン LB膜の単層および多層膜の構造評価を、X線回折 により行った。ガラス基板上に作製されたアラキ ジン酸マンガンLB膜は、1層から19層よりなる。 図3に1~19層のX線回折パターンのスタックプロ ットを示す。1.08°付近のピークは全層に共通で、 最大反射を与えることから、ガラス基板上の全反 射と帰属した。1°から2°の範囲では、入射X線の 入り込みにより背景反射が無視できない。反射指 数は2方向の(001)は決定できたが、面内方向の 指数は決定できなかった。さらに広角側の20°か ら40°まで角度掃引を行ったが回折ピークは観測 されなかった。回折強度は(001)反射が最大で、高 次反射では順次指数関数的に低下している。

図 3 .アラキジン酸マンガン塩 L B 鍵の各層数における X 線回折パターンのスタックプロット

-24 -

一般的に行われるように、アラキジン酸マンガン を物性定数を用いて分子モデルを形成すると、Y 膜の2分子膜の厚さは5.5nm になる。また9層およ び19層の(001)反射から求められた面間隔、およ び1~5層の(001)反射が不鮮明なので(002)の データから求められた面間隔を表2に示す。1~5層 の(001)反射の強度は積層数に比例して指数関数 的に増加するが、背景反射の影響をうけ測定精度 を損なっている。1~5層の(002)反射と9~19層の (001)反射の結果から、1~3層ではアラキジン酸が ほぼ垂直に配向しており、5~19層では約30°の傾 きで配向していることが知られた。

 $\begin{bmatrix} 10000000 \\ 1000000 \\ 100000 \\ 10000 \\ 10000 \\ 10000 \\ 1000 \\$

図4.アラキジン酸マンガン塩粉末のX線回折パターン。各回折ビーク は次のように帰属された。Aは全反射、B~Kは多形中の主成分 の層状化合物の(00)反射面の各ビーク(*i*=1~10)、b~i は多形中の副成分の層状化合物の(00)反射面の各ビーク(*i*= 1~8)である。

アラキジン酸マンガン塩粉末のX線回折の回折 パターンを図4に示す。図から明らかなようにLB 膜とほぼ同様の回折パターンを示し、2次元の層状 構造であることが判明した。半値幅もLB膜19層に 比較して(001)面反射において10%余り大きいだ けで、結晶の乱れによる散漫散乱は小さい。

(001) 反射の奇数と偶数の回折強度に大きな差 が見られる。奇数の回折強度は指数の増加に伴い 指数関数的に減少しているが、偶数は指数の増加 に伴い一次関数的に減少している。この差は層状 構造の面内反射が寄与しているからと考えられ る。

(001) 反射の回折強度はLB 膜19層に比べて5倍 ほど高く,長周期方向に100層程度の非常に高い秩 序の結晶を形成していることが知られた。面間隔 は 49.0 nm とLB膜19層のそれと一致し、アルキル 鎖が約30°傾いた構造を示す。

また強度比が約半分で面間隔の異なる2次元の 層状構造が隣接し,アルキル鎖の傾斜は42°と非 常に大きい。すなわち,結晶型の異なる系が混在 しており,主成分はLB膜の層構造とよく一致して いる。この系のLB膜は自己の凝集力で形成され た結晶と同じ構造を示す。このことは,基板との 相互作用の少ない多層膜は,水面上の単分子膜が 基板に移し取られたときに,分子自身の持つ凝集 力によって累積構造を自己形成することを示して いる。

4. 考察

4.1 積層方向の秩序性

X線によるアラキジン酸マンガン塩LB膜の散漫 散乱を評価するために,層状化合物のモデルを用 いた構造因子を使用する。まず原子散乱因子f_{Mn.0.C} は次式で表わされる。

$$f_{Mn, 0, C} = Aexp(-aX^2) + Bexp(-bX^2) + C$$
 (2)

ここでA, B及びCは振幅, aとbは位相に関するパラ メータである。次にBraggの反射式は面間隔の逆 数Xに対し次の式で表わされる。

$$\mathbf{X} = \frac{\sin\theta}{\lambda} \tag{3}$$

ここで λ はX線の波長, θ は反射角(回折角)で ある。

(2) と(3) 式を用いてZ方向の構造因子は(4) 式 で与えられる。

$$F(00\ell) = \sum_{1}^{N} f_{Mn, O, C} \exp[2\pi i (\ell Z)]$$
(4)

ここでNは単位格子中の原子の数を,Zは積層方向 を(膜の法線方向)をそれぞれ表わす。(001)反 射の構造因子Fと回折強度Iの間には次式の関係が 成り立つ。

$$I \propto |F|^2 \cdot \frac{1 + \cos^2 2\theta}{\sin^2 \theta \cdot \cos \theta}$$
(5)

(5) 式より相対強度Iはθに対して指数関数的に減少することがわかる^{12),13)}。

図5.アラキジン酸マンガン塩LB膜の各層数におけるX線回折強度 の変化

図5に層数と(001)の回折強度の相関を示す。 図に示すように19層の回折強度でIとθの相関は指 数関数からずれている。(001)反射において層数 の増加に伴い回折強度は増加し、その増加の程度 は1~5層、5~19層の2種の領域で異なる傾きを示 す。

また(002)あるいは(003)の高次反射では次第 に線型関係になる傾向が見られた。これらの挙動 は低角側の入射X線の入り込みによるずれや層間 内部の多重反射等の影響によると考えられる。

LB 膜の不整構造が与える散漫散乱の強度は, Debye - Waller 因子(Factor)¹⁴⁾に比例し(6)式 で近似される¹⁵⁾。

$$I \propto \exp\left(\frac{-16\pi}{\lambda^2 \cdot \overline{\Delta Z^2} \cdot \sin^2 \theta}\right)$$
(6)

 $\overline{\Delta Z^2}$ は法線方向<001>の散乱の最小2乗揺らぎ を表わす。揺らぎを評価すると $\overline{\Delta Z^2} = 10^{-3}$ nm²と小 さいので、z方向の構造制御が非常に良いことが知 られた。

4.2 アルキル鎖の傾斜配向について

5~19層の多層膜のアルキル鎖の配向は約30° で,配向は竹中らのFT – IR¹⁰⁾による配向評価とよ く一致している。しかし,ChalletのCu錯体におけ るEPRデータ(50±13°)とかなり異なっている⁶⁾。

一方, Pomerantz¹⁶⁾のステアリン酸マンガン塩の 多層膜のLB膜でもEPRの線幅が60°に極小が存在 し,何らかの傾斜配向の存在を示している。少な くともこれら2つのEPRによるマンガン脂肪酸塩 の構造評価からは、Mnイオンがある傾きをもって 配列していることを示している。以上の結果、X線 構造解析から特にMnイオンの場所的揺らぎ、ある いはうねりが小さいことから、アルキル鎖の配向 が傾いている構造が想定できる¹⁷⁾。

4.3 面内の秩序性

アルキル鎖の電子線回折の結果から,LB膜面内 の 六 方 晶 系(hexagonal) お よ び 単 斜 晶 (orthorohmbic)の配列が提唱されている¹⁴⁾。

本研究のX線回折による構造解析では,面内の アルキル鎖の配列は単斜晶系となった。このアル キル鎖の配列に2:1でMnイオンを配置してゆく と構造的には秩序性が低下する。このとき面内の Mnイオンは 0.89 nm, 0.50 nm の2種類の距離が想 定される。従来,2分子膜の金属イオンが同一面内 にあるという報告がステアリン酸カドミウム等で 報告されているが⁹⁹,同一構造を取ると仮定すると Mnイオンがアルキル鎖と同一個数および同一配列 になるので,六方晶系もしくは単斜晶系となる。

さらに、PomerantzのEPRの結果¹⁶⁾では積層面に 垂直な方向で強い交換相互作用が観測され、Mn-Mn相互作用は法線方向が面内方向より大きい。し たがってこのことから、Mnイオンは同一面内にあ るより距離的に近いことが判る。以上のことか ら、この2分子膜のMnイオンは同一面内にあるこ とはないと結論づけられる。

5. 結 論

飽和脂肪酸重金属塩LB膜による二次元磁性体の開発を行い、その中でアラキジン酸マンガン塩LB膜が有望であることを見いだし、X線回折を用いてその構造を検討した。ガラス基板に累積させた多層膜は1~3層が基板の相互作用からほぼ垂直に配列し、それ以上の厚みのある層は自己の凝集力により、基板の法線方向から約30°近く傾いた構造になることが知られた。多層膜の微結晶の大きさに対する乱れは小さく、法線方向の分子配列の制御性が高いことが確認された。さらにX線回折による構造評価とEPR等の物性評価との相関性も明確になった。

参考文献

1)I. Langmuir, V. J. Schaefer; J. Am. Chem. Soc., Vol. 60 (1938), P1351.

北海道立工業技術センター研究報告№3(1994)

- 2)K. B. Blodgett ; J. Am. Chem. Soc., Vol. 57 (1935), P1007.
- 3)F. Ferrieu, M. Pomerantz ; Solid State Commun., Vol. 39 (1981), P707.
- 4)M. Pomerantz, A. Segmuller; Thin Solid Films, Vol.68 (1980), P33.
- 5)T. Haseda, H. Yamakawa, M. Ishizuka, Y. Okuda, T. Kubota, M. Hata and K. Amaya ; Solid State Commun., Vol. 24(1977), P599.
- 6)P.A Chollet ; Thin Solid Films, Vol. 68, 13 (1980),.
- 7)V.K.Srivastava, A.R.Verma ; Solid State Commun., Vol.4 (1966), P367.
- 8)B. Mann, H. Kuhn ; J. Appl. Phys., Vol. 42 (1971), P4398.
- 9)M. W. Charles ; J. Appl. Phys., Vol. 42
 (1971), P3329.

- 10)T. Takenaka , K. Nogami ; Bull. Chem. Soc. Jpn., Vol. 45 (1972), P2367.
- 11)T. Kajiyama, Y. Oishi ; Membrane, Vol.17 (1992), P333.
- 12)W. Lesslauer ; Acta Cryst., Vol. B30 (1974), P1927.
- 13)A. Matsuda, M. Sugi, T. Fukui, S. Iijima,
 M. Miyahara and Y. Otsubo ; J. Appl. Phys.,
 Vol. 48 (1977), P771.
- 14)A. Guinier : X-ray Diffraction (W. H. Freeman Company, San Francisco and London), (1963), chap. 4~7.
- 15)K. Mizushima ; J. Jpn. Appl. Phys., Vol. 26 (1987), P772.
- 16)M. Pomerantz, F. H. Dacol and A. Segmuller ; Phys. Rev. Lett., Vol. 40 (1978), P246.
- 17)K. Matsushita, T. Takamura and Y. Shimoyama; Membrane (1994)